반응형
Numpy
: Numerical Python
array1 = numpy.arange(2, 7)
print(array1)
import numpy
array1 = numpy.array([2,3,5,7,11,13,17,19,23,29,31])
array2 = numpy.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(type(array1))
print(array1.shape)
print(array1.size)
print(type(array2))
print(array2.shape)
print(array2.size)
full
array1 = numpy.full(6, 7)
print(array1)
# [7 7 7 7 7 7]
array1 = numpy.full(6, 1)
array2 = numpy.ones(6, dtype=int)
print(array1)
print()
print(array2)
#[1 1 1 1 1 1]
#[1 1 1 1 1 1]
zeros
array1 = numpy.full(6, 0)
array2 = numpy.zeros(6, dtype=int)
print(array1)
print()
print(array2)
arange
array1 = numpy.arange(6)
print(array1)
array1
# 출력
# [0 1 2 3 4 5]
# array([0, 1, 2, 3, 4, 5])
array1 = numpy.arange(2, 7)
print(array1)
# [2 3 4 5 6]
array1 = numpy.arange(3, 17, 3)
print(array1)
# [ 3 6 9 12 15]
끝 출력 숫자 -1 만큼
반응형
'Python > Numpy' 카테고리의 다른 글
[Numpy] Python List vs Numpy Array (0) | 2023.12.25 |
---|---|
[Numpy] 연산 (0) | 2023.12.25 |
[Numpy] Indexing, Slicing (0) | 2023.12.25 |